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ABSTRACT

Understanding the nature of turbulent flows remains one of the outstanding

questions in classical physics. Significant progress has been made recently using
computer simulation as an aid to our understanding of the rich physics of tur-

bulence. Here we present both the computer science and scientific features of
a unique terascale simulation of a weakly-compressible turbulent flow, including

tracer particles. The simulation was performed on the world’s fastest super-
computer as of March 2007, the Lawrence Livermore National Laboratory IBM
BG/L, using version 3 of the FLASH code. FLASH3 is a modular, publically-

available code, designed primarily for astrophysical simulations, which scales well
to massively parallel environments.

We discuss issues related to the analysis and visualization of such a massive
simulation, and present initial scientific results. We also discuss the opening of the

dataset and challenges related to its public release. We suggest that widespread
adoption of an open dataset model of computing is likely to result in significant
gains for the scientific computing community in the near future, in much the

same way that the widespread adoption of open source software has produced
similar gains in the last decade.
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1. Introduction

Turbulent flows are ubiqutious in nature, arising in scales as small as table-top exper-
iments of fluids to scales as large as interstellar gas clouds, and play a fundamental role

in the mixing, transport, and combustion of fluids. Yet despite its importance, turbulence
largely remains an unsolved problem, particularly when one is interested in computing de-

tailed properties of a flow, such as the turbulent drag over an airplane wing, or the rate of
combustion in a turbulent flame.

The last two decades have seen our knowledge of turbulent flows grow in leaps and
bounds, thanks in no small part to the use of computers both in the laboratory and in

simulation. Beginning in December 2005, the ASC Alliances Center for Astrophysical Ther-
monuclear Flashes at the University of Chicago was one of six groups in all fields of compu-
tational science invited to use the Lawrence Livermore National Laboratory (LLNL) BG/L

supercomputer (currently the world’s largest and fastest), shortly before it was permanently
incorporated into their secure network. The Flash Center’s simulation is the world’s largest

weakly-compressible, homogeneous, isotropic simulation in existence (5; 15; 16). Approxi-
mately one week of CPU time on 65,536 processors in coprocessor mode was used to complete
the simulation. The turbulence was also tracked with 2563 dimensionless Lagrangian par-

ticles. Our findings indicate that the wealth of data gathered is of very high quality, and
can be used to constrain fundamental theories of turbulence, as well as provide a “virtual

turbulence laboratory” in which many other ideas (such as subgrid models of turbulence)
can be tested. We will open access to this dataset publicly later this year.

The FLASH code (7; 13) used in this turbulence simulation is a modular, component-
based application code used for simulating compressible, reactive flows found in astrophysical

environments. The code supports multiple methods for managing the discretized simulation
mesh, including an in-house Uniform Grid implementation, and the PARAMESH library (19)

which implements a block-structured adaptive grid. The FLASH code scales very well and
was chosen in the spring of 2004 as one of the marquee applications for the new BG/L
platform (6). The BG/L machine revives the massively parallel computing paradigm of

large numbers of relatively slow and simple processors with limited memory (10). It provides
teraflop-scale computation through duplication of hardware, rather than through hardware

complexity. In its largest incarnation at LLNL, the parallelism is an order of magnitude
larger than any other available platform. BGL’s configuration is a marked deviation from

the prevailing practices in high performance computing, and presents both opportunities and
challenges to application developers and users. Because each BG/L processor offers lower
performance and less memory than processors on other platforms, scientific applications

attempting to effectively use this platform must be able to exploit fine-grained parallelism
while scaling to many tens of thousands of processors.
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2. Architecture

The most recent major release of the FLASH code is version 3. The FLASH3 architec-
ture is defined by two entities: the units, and the setup tool (3). FLASH3 is neither a single

application nor a single binary. Rather, it is a collection of units combined by the setup
tool into an application tailored for specific simulations. The unit is the basic functional

entity in FLASH3; it provides well-defined functionality and conforms to a structure that
facilitates interactions with other units. All units must conform to a set of inheritance and
encapsulation rules. For example, a unit may have sub-units to collect self-contained subsets

of its functionality into easily identifiable entities. A unit may also have interchangeable
implementations of varying complexity, including child implementations that inherit from

and override the functionality of the parent.

Fig. 1.— Examples of FLASH3 units.

FLASH units can be broadly classified into five groups: infrastructure, physics, mon-
itor, driver, and simulation (see Figure 1). The infrastructure units are responsible for all

the housekeeping tasks of the code such as managing the grid which describes the physical
domain, making runtime parameters available as needed, and organizing all the input and
output (I/O) from the code. The physics units implement algorithms to solve the mathemati-

cal equations describing specific physical phenomena, for example Hydro (for hydrodynamics)
and EOS (for the equation of state) (8). The monitoring units Logfile and Profiler track the

progress of an application, while the Driver unit implements the time advancement meth-
ods and controls the simulation by managing the interaction between the included units.

The Simulation unit is of particular significance because it specifies a given application by
defining the initial conditions and simulation-specific runtime parameters.

Each unit has one or more text files called Config files. These specify the (sub)unit
requirements, such as physical variables, applicable runtime parameters, and the interaction

with other code units. The setup script starts building an application by first examining the
Config file in the Simulation unit, which specifies units essential for the simulation. The setup
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tool then parses the Config files of required units to find their physical variables, runtime

parameters and necessary libraries to create a cohesive set of files defining an application. Fi-
nally, the user compiles the code pieces to produce an executable application for his problem.
A user can replace any native FLASH routine by providing an alternative implementation in

the problem setup directory. For example, users can provide their own criteria for refining
the mesh by including the appropriate code files with compatible function interfaces in the

Simulation directory.

3. Algorithms

The large-scale turbulence simulation described in this paper used a uniform Cartesian
grid, which divides the physical domain into uniformly-spaced computational cells. Periodic
boundary conditions are applied to all physical variables at the domain edges. Individual

computational cells are grouped into equal-sized cubical subdomains, which are then mapped
to different processors. We refer to these subdomains as blocks. A perimeter of non-physical

guardcells surrounds each block of data, providing it either with data from the neighboring
blocks (if the block is in the computational domain interior proper), or from boundary

conditions (if the block lies on the edge of the computational domain).

The hydrodynamics solver used in the simulation is a directionally-split piecewise-

parabolic method (PPM) (9) that solves the Eulerian equations with an explicit second-
order accurate forward time difference (13). Time-advanced fluxes at cell boundaries are

computed using the numerical solution to the Riemann problem at each boundary. Initial
conditions for each Riemann problem are determined by assuming the nonadvanced solution
to be piecewise-constant in each cell. Using the Riemann solution has the effect of intro-

ducing explicit nonlinearity into the difference equations of flow and permits the calculation
of sharp shock fronts and contact discontinuities without introducing significant nonphysi-

cal oscillations into the hydrodynamics. The flow variables are represented with piecewise
parabolic functions, making this scheme a second order accurate method.

Because theories of turbulence generally assume a steady state, and because turbulence
is inherently a dissipative phenomenon, we have chosen to drive the simulation to sustain a

steady-state. This driving must be done carefully in order to avoid introducing artifacts into
the turbulent flow. We use a relatively sophisticated stochastic driving method originally

introduced by Eswaran & Pope (11). The turbulent velocity fluctuations are described by
Fourier-transforming from the spatial domain. For each “stirred” mode of the velocity field,
an acceleration is applied at each timestep. The field consists of three complex phases, with

each acceleration mode evolved by an Ornstein-Uhlenbeck (OU) random process, a process
which is analogous to Brownian motion in a viscous medium. An OU process is a time-

correlated, zero-mean, constant-root-mean-square process. Each next step in the process
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adds a Gaussian random variable with a given variance, weighted by a “driving” factor
√

(1 − f 2), where f = e
−

∆t
τdecay then “decays” the previous value by an exponential factor f .

Since the OU process represents a velocity, the variance is chosen to be the square root of

the specific energy input rate divided by the decay time τdecay. In the limit that the timestep
∆t → 0, the algorithm represents a forcing term that is a linearly-weighted summation of

the old state with the new Gaussian random variable.

By evolving the phases of the stirring modes in Fourier space, imposing a divergence-

free condition is relatively straightforward. At each timestep, the solenoidal components of
the velocities are projected out, leaving only the non-compressional modes to add to the

velocities. The velocities are then converted to physical space by a direct Fourier transform
– adding the trigonometric terms explicitly. Since the stirring is done in the low modes,
most drivings involve a fairly small number of modes; therefore this decomposition is more

efficient than a complete Fast Fourier Transform. The FFT would need large numbers of
modes (six times the number of cells in the domain), the vast majority of which would have

zero amplitude.

The simulation also evolved the movement of massless tracer particles, which are point-
like objects characterized by positions xi, and velocities vi. The characteristic quantities of
each particle are defined by the position of the particle and are determined by interpolation

from the grid mesh. The particles move with the flow relative to the mesh and can travel
from block to block, requiring communication patterns different from those used to trans-

fer boundary information between processors for mesh-based data. The implementation in
FLASH directionally splits the movement of particles out of a block. Consider a particle that
moves from (x, y, z) to (x1, y1, z1). If the new coordinate (x1) is outside the particle’s current

block, it is moved to the appropriate neighbor along the first dimension. The particle is now
owned by the neighbor, and when examining movement along the second dimension, the

neighboring block will treat it identically to its own particles. The processes is repeated for
all the dimensions, until the particle terminates movement in the correct block. The direction

splitting halves the number of explicit data exchanges between processors per timestep from
26 (potentially one exchange with every neighbor including those along the corners) to 13.
The computation required for a particle is performed by the same processor that evolves the

block in which the particle resides. No effort is made to separately load-balance the particle
computations because experience has shown that the cost of load balancing the particles out-

weighs the gain of maintaining a good load balance for what is a small fraction of the overall
execution time. The effect of this choice on scaling is discussed below. The time integration

used for the Lagrangian particles in this simulation uses a predictor-corrector scheme that
yields a solution better than first-order accurate if the timesteps frequently change, and a
second-order accurate solution if they stay relatively uniform (3).
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4. Challenges of Scale

The BG/L machine deviates from the current parallel computing norm of relatively few
but very powerful processors with large memory. This standard model derives from cluster-

based computing, which is driven by single processing element (PE) performance. The
BG/L machine, on the other hand, uses slower processors with limited memory, and relies

upon finer grain parallelism to achieve performance. This shift in the computing paradigm
presents major challenges to codes that are memory- intensive and have components with
global communication patterns.

Multiphysics codes like FLASH3 usually face trade-offs between modularity, efficiency

of memory, and CPU usage. For example, in order to keep various physics solvers in the code
independent of one another, and their data management well modularized, multiple copies
of some datasets may exist in the code. This problem could be alleviated with dynamic

memory management, but that solution causes loss of compiler optimizations and therefore
computational efficiency. Also, while a single timestep evaluation typically involves nearest

neighbor communications only, some operations are necessarily global, such as updating the
timestep selected by the Courant condition. Additionally, scientific calculations generate
massive amounts of data, and the I/O management and post-processing usually becomes

the biggest challenge.

Because turbulent flow simulations benefit from high resolution everywhere, the simu-
lation described here did not need to use the adaptive mesh capabilities of the FLASH code

(but see also (18)). Use of a uniform grid reduced the global communication complexity
of the Eulerian part of the solution, letting it scale almost perfectly, as shown in the weak
scaling plot of Figure 2. Figure 2 plots time taken to advance the solution by 50 timesteps;

both axes are in logscale. The two lines show the overall evolution time and the time taken
by the tracer particles. The number of processors along the x-axis grows from 1 to 32, 768;

and the amount of work grows in proportion to the number of processors. The Lagrangian
tracer particles, however, do not show the same perfect scaling, even though their commu-
nications pattern is nearest-neighbor like that of the Eulerian grid. As mentioned above, no

separate effort is made to load-balance the particles. The complex nature of the turbulent
flow changes the particle distribution during the evolution, which unbalances the particle

load distribution and degrades the scaling. But because the particles account for only a
small fraction (less that 0.3%) of the overall execution time, the effect on the overall scaling

is negligible.

Despite the excellent overall scaling, the sheer scale of the simulation and the tremendous

amount of generated output data still presented a huge challenge. We took particular care
before the run to test the scaling of FLASH3 I/O, given the lack of evidence of successful

parallel I/O on the BG/L machine or on other such large scale computations. As anticipated,
we found that none of the parallel I/O libraries available with FLASH3, namely HDF5 (20),
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Fig. 2.— Weak scaling of the Eulerian mesh and Lagrangian particles with FLASH3 for the

driven turbulence problem.

PnetCDF (1), or basic MPI-IO (2) scaled to more than 1024 processors. This limitation
required us to implement a direct I/O approach whereby each process wrote its portion

of the global data to its own file in the Fortran sequential format. In all, the run totaled
about 2,300 separate data dumps in time, and each dump created 32,768 files, for a total of
roughly 74 million files, occupying 154 TB of disk capacity. Here, the challenge was not just

the volume of data, but also the almost unmanageable number of files. The transfer of data
to the local site for analysis took several weeks, using four nodes of the LLNL machine ALC,

each running gridftp (24). The total sustained transfer rate averaged about 20 MB/sec. We
are now using computing clusters to visualize and analyze the data in small sections at a

time, which has become a large-scale computing project of its own.
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5. Science

5.1. Introduction

The single most significant contribution to turbulence theory was Kolmogorov’s 1941

idea that at very high Reynolds numbers, turbulent flows develop an energy cascade from
large scales down to small which is governed by self-similarity (17). The range of scales

between the large modes where the fluid is driven, and the small scales on which its energy
is dissipated, is known as the inertial regime. As a consequence of self-similarity at high

Reynolds numbers. Thus, according to Kolmogorov, the high-Reynolds number turbulent
flow is said to be “universal”: the resulting state of any two such fluids are governed by the
same set of scaling laws in the inertial regime.

Over the past twenty years, extensive research has been performed on turbulent flows.

One of the key insights attained in both experiment and in numerical simulation is that Kol-
mogorov’s original theory is incomplete: the hypothesized self-similarity is broken because
the dissipation within the fluid does not occur homogeneously, but instead is intermittent in

both space and time. The resulting scaling laws, which differ from Kolmogorov, are said to
exhibit “anomalous scaling.”

Kolmogorov’s theory is to turbulence what Newton’s laws are to mechanics: a highly
successful, though incomplete framework whose enormous influence is widely felt. A number

of phenomenological theories have been advanced as possible heirs to Kolmogorov’s legacy,
though it remains unclear which of these (if any) is correct (12; 23). Working directly from

the Navier-Stokes equations presents challenging barriers to standard mathematical analysis
techniques, so theorists must instead work from plausible assumptions.

Another issue is that our techniques of treating hydrodynamical flows away from the
strictly incompressible limit is different than the majority of work done in the turbulence

community. Hence, we also need to compare our results against experiment, theory, and
previous simulations in order to convince ourselves that weak compressibility does not have

a strong influence upon the scientific conclusions we draw from our dataset.

In the following, we use the idea of anomalous scaling to probe our BG/L turbulence

run dataset to gather clues to these questions.

5.2. Results

A fundamental mathematical tool commonly used by turbulence researchers to examine
the scaling properties of turbulent flow is the pth-order structure function Sp(r), which is in

fact closely related to the autocorrelation function of the velocity field :
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Sp(r) = 〈|"v("x + "r) − "v("x)|p〉 ∝ rξp

Here 〈〉 denotes an average of spatial locations "x over all space. The proportionality on the
right-hand side applies over a range of separations r in the inertial regime, and is a direct

consequence of self-similarity.

A naive computation of Sp(r) involves an average over all spatial points. However,
instead of calculating Sr(p) directly, we generate probability distribution functions (PDFs)
of each component of the velocity increment ∆vr = "v("x+"r)−"v("x) of each interval r for each

dimension for each dimensional velocity component. Since this approach only calculates the
separations along a given dimension, it allows for a very natural slab-decomposition of the

domain of a given timestep, as well as very straightforward parallelization, enabling us to
perform this analysis on a small cluster. Once the PDFs of velocity increments are generated,

the structure functions can be computed directly, from

Sp(r) =

∫

d∆vrP (∆vr)∆vp
r

The Lagrangian tracer particle data can be analyzed in a similar fashion, taking the pth
order structure function with respect to time:

Sp(τ) = 〈|"v(t + τ) − "v(t)|p〉 ∝ τ ξp

While the Lagrangian dataset is significantly smaller, problems in the calculation do

arise as each timestep is contained in a different file, making I/O much more costly due to
the frequency of accesses than it is with the Eulerian dataset. A similar method of histogram
generation is utilized as is described above. The structure-function data generated from this

set was then used to verify the Lagrangian tracer particle data.

A very useful technique in determining the scaling exponents ξp was first discovered by
Roberto Benzi and colleagues, who noted that an extended self-similar region appears when,
instead of plotting the pth-order structure function versus r, one plots versus the third-order

structure function (4). This technique is referred to as extended self-similarity (ESS). The
scaling exponents derived from ESS are in fact identical to the ξp above, since the third-order

structure function Sp(r) is exactly proportional to r, as was first rigorously demonstrated by
Kolmogorov in his famed 4/5th law. The advantage of ESS is that the self-similar scaling

regime is very broadly extended over 1-2 more decades in lengthscale, which permits much
more precise determinations of the scaling law exponents.

One can easily demonstrate that, were Kolmogorov’s original theory strictly correct,
and if dissipation occurred homogeneously, the exponents ξp would simply equal p/3. In



– 10 –

the inertial regime, the flow is self-similar and no other characteristic length scales are

introduced. Therefore, the scaling exponents ξp follow directly from simple dimensional
analysis: assuming a characteristic velocity v over a spherical region of size r, the dissipation
per unit mass ε within r must scale as ε ∝ v3/r. If ε is homogeneous, and the flow is steady,

one infers that v ∝ r1/3. Dimensional analysis then reveals the exponents ξp are simply equal
to p/3.

Fig. 3.— Anomalous scaling exponents (through p = 10) from the BG/L run (points with
error bars) compared against predictions of Kolmogorov’s original 1941 theory (straight solid

line), as well as the predictions of She-Leveque (curved solid line), and experimental results
analyzed by Benzi (solid circles).

We can directly test Kolmogorov’s original theory, as well as more recent theories, by
applying ESS to the data from the BG/L run. The results are shown in in Figure 3. These

results show the scaling exponents ζp versus p derived from fits of the structure function as a
function of separation r along x – one of the three principal components of the longitudinal

structure function. As is easily seen, Kolmogorov’s 1941 theoretical prediction deviates
systematically from both Benzi’s experimental analysis and our simulation. In contrast,
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the more recent theory of She-Leveque’s (23) is in close agreement with both experiment

and simulation. We conclude that despite being weakly-compressible, our simulation agrees
very well with previous incompressible results, and suggests that our dataset can be used to
explore a wide variety of issues in turbulent flows.

5.3. Visualization

Current visualization efforts have focused on exploration of the dataset. This effort

has utilized a combination of open source solutions (e.g., ParaView, VisIt) and specific
solutions to meet analysis needs. Processing has been done to augment the dataset with post-

simulation content such as scalar magnitudes of the local vorticity and divergence vectors,
with this data now being stored as part of the dataset that will be made publicly-available.
Visualization challenges have demonstrated the need for large resources beyond the initial

simulation, the need for data filtering and selection tools to reduce the data to appropriate
amounts for viewing, and investment in remote visualization solutions. The generation of

the derived data fields for vorticity and divergence required 1.5 days on a 64 node cluster.
Visualizing all 16 million Lagrangian particle traces yields no useful insight, instead filtering

and cutting the data to highlight features and areas of interest is crucial (see Figures 4 and 5).
Future efforts will involve the integration of work-flow tools for the construction of analysis
pipelines, the continued augmenting of the data to increase its value to the community, and

the availability of focused tools for users to visualize the data.

6. Open Dataset Model

The public release of the dataset will perhaps be one of the most far-reaching conse-
quences of this effort. Performing simulations at the scale of the FLASH run is by necessity

a major challenge that few research efforts have both the technical capacity and compu-
tational resources to address. Even when successful, most such datasets are not typically
publicly-released, which limits their impact to a tiny set of researchers privy to the data.

Here we draw inspiration from the open source movement, and advocate an open model for
high-performance computing datasets – namely, that large-scale high-performance comput-

ing datasets should be made openly-accessible. While dissemination and analysis of high-
performance computing datasets poses numerous technical challenges, we argue that these
technical challenges can be addressed and overcome, and are outweighed by the potential

scientific gains to be achieved by sharing the datasets.

Historically, the movement known today as “open source” originated with the IBM user
group SHARE in the 1950s, and was later championed by Richard Stallman and the Free

Software Foundation beginning in the early 1980s. However, it first received widespread at-
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Fig. 4.— Volume rendering of one component of velocity of the grid data in fully-developed

turbulence, taken over a subset of the domain.

tention following Eric Raymond’s highly-influential paper, “The Cathedral and the Bazaar,”
(22) which inspired Netscape to release a version of its browser software in 1997.

The open source model of distributing source code has had an enormous impact on
computing in both the scientific and business worlds. At the heart of the open source

paradigm is the elimination of barriers to the exchange of source code, thereby creating a
free marketplace of ideas wherein communication and resource sharing is encouraged. In

the years following Raymond’s essay, the number of open source code development projects
skyrocketed, and companies such as IBM, HP, Oracle, and CollabNet have incorporated the

open source paradigm into their business models. Perhaps even more far-reaching are the
wide array of other endeavors inspired by the open source paradigm – including everything
from open publication projects such as Wikipedia, The Creative Commons, and The Science

Commons to open educational curricula such as the OpenCourseWare project at MIT, and
numerous projects in between.
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Fig. 5.— Particles contained within cut planes of the problem domain in fully-developed
turbulence, shaded by velocity.

We believe that the same open-minded thinking which gave rise to the open source model

of distributing source code can also be profitably applied to large-scale high-performance
computing datasets. In other areas of science where experimental and observational datasets
have been made open to researchers, enormous strides have been made. Particularly-

successful example include the Human Genome Database (14), the Sloan Digital Sky Survey
survey (25), and the Particle Physics Data Grid (21). The impact of these projects has been

enormous in their respective fields. Over 3,000 astrophysics articles refer to the Sloan Digi-
tal Sky Survey alone. Yet, despite the significant advantages to be gained by sharing data,

the high-performance computing community has lagged behind their colleagues in opening
access to their datasets. We believe this is in part due to some lingering fundamental mis-
conceptions about the nature of simulation and analysis. Once these issues are recognized, it

becomes clear that opening access to high-performance computing datasets presents a major
opportunity for the growth of computational sciences.
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The first common misconception is that large-scale computational datasets which re-

quired the world’s largest supercomputers to compute would also necessarily require the
world’s largest supercomputers to store and to analyze. However, this is not the case. For
a wide class of problems which are CPU-bound (and not memory-bound), the results of

large-scale simulations performed on the world’s lagest machines can be analyzed on smaller
machines, such as widely-available small-scale Linux clusters. As a concrete example, con-

sider a traditional high-performance computing time-dependent simulation of a set of partial
differential equations discretized explicitly onto a uniform mesh of ND cells in D dimensions.

In this case, due to the Courant limitation on the timestep, the number of CPU operations
to complete the simulation will scale as ND+1, even though the number of operations to be
performed for a local analysis scales only as ND. Based on this analysis, it is easy to see

that local post-processing of a dataset will be roughly cheaper by a factor of N over the full
simulation. In state-of-the-art 3D simulations, N approaches (2−4) ·103, and the number of

CPUs utilized during the full simulation range upwards of 105. However, simply scaling these
numbers, it is clear that the post-processing analysis of this same dataset can be completed
in a roughly equal amount of wall-clock time on just a few hundred processors. Significantly,

the analysis of wide classes of large-scale datasets can be completed on small-scale clusters.
In fact, all of the analysis shown in this paper was completed on several small-scale Linux

clusters at the University of Chicago, all smaller than 256 processors.

Another common misconception is that distribution of large-scale datasets could pos-
sibly eat up large amounts of bandwidth, and take very long times to transfer. However,
this is not a fundamental issue, either – for instance, one solution is simply to sidestep the

transfer of the datasets and collocate storage and computation, allowing open access to the
system to all interested parties. We believe quite strongly that this is in fact the natural

solution for very large datasets, and have adopted the collocated model in establishing a new
datastore system at the University of Chicago. Our turbulence dataset will be served to the
community from the University of Chicago’s Computation Institute’s (CI) large datastore.

The system currently is a scalable high-performance storage resource that has 75 TB of raw
storage configured in an 8+2 RAID array, allowing up to 48 drives to fail with no impact

to performance, stability, or reliability. It can deliver a sustained throughput of 3 GB/s.
It can also be scaled to 480 TB of raw storage. Five I/O servers are connected to storage

system by five fiber channels and then connected to the outside world via 1 Gb/s Ethernet
connections to the CI’s 10 Gb/s I-WIRE link. Collocated with the storage resource is the
CI’s TeraPort compute resource; a 244 processor AMD Opteron cluster that will be used for

local processing of the data.

High-performance computing consists of a hierarchy of computation – at the top, the
world’s fastest machines, used by a handful of researchers, and towards the bottom, smaller
machines accessible to a much wider community. The public release of the Flash Center

dataset will amplify the impact of our turbulence effort significantly by sharing our results
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with many levels on the computational hierarchy. Moreover, if our data dissemination effort

is successful, we hope it will provide both a fruitful model and concrete software tools for
other computational scientists to release their datasets in a similar fashion.

7. Conclusion

The ASC Flash Center at the University of Chicago has produced the largest weakly-
compressible, homogeneous isotropic turbulence simulation to date. The simulation was

performed on the world’s largest and fastest supercomputer, BG/L, located at Lawrence
Livermore National Laboratory. The results were produced using the newly released version

3 of the FLASH code, which is a modular, application-specific tool for astrophysical sim-
ulations which scales well to massively parallel environments. The BG/L configuration of
over 64,000 processors with limited memory and computing power posed special challenges.

Specialist input/output routines were developed, and efficient particle-tracking schemes were
implemented. Despite the demanding conditions, preliminary analysis of the results indi-

cates a dataset of very high quality. Extended self-similarity analysis on the data shows good
support for new theories of turbulent structure and match well with experimental evidence.

The massive dataset will be released to the public, thereby further expanding the impact of
this simulation.
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